Явление доплера. Школьная энциклопедия. Иллюзия, вызванная движением

Энциклопедичный YouTube

  • 1 / 5

    Исходя из собственных наблюдений за волнами на воде, Доплер предположил, что подобные явления происходят в воздухе с другими волнами. На основании волновой теории он в 1842 году вывел, что приближение источника света к наблюдателю увеличивает наблюдаемую частоту, отдаление уменьшает её (статья «О цветном свете двойных звезд и некоторых других звезд на небесах (англ.) русск. »). Доплер теоретически обосновал зависимость частоты звуковых и световых колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волн и наблюдателя относительно друг друга. Это явление впоследствии было названо его именем.

    Доплер использовал этот принцип в астрономии и провел параллель между акустическим и оптическим явлениями. Он полагал, что все звёзды излучают белый свет, однако цвет меняется из-за их движения к или от Земли (этот эффект для рассматриваемых Доплером двойных звёзд очень мал). Хотя изменения в цвете невозможно было наблюдать с оборудованием того времени, теория о звуке была проверена уже в 1845 году . Только открытие спектрального анализа дало возможность экспериментальной проверки эффекта в оптике.

    Критика публикации Доплера

    Главным основанием для критики являлось то, что статья не имела экспериментальных подтверждений и была исключительно теоретической. Хотя общее объяснение его теории и вспомогательные иллюстрации, которые он привел для звука, и были верны, объяснения и девять поддерживающих аргументов об изменении цвета звёзд верны не были. Ошибка произошла из-за заблуждения, что все звёзды излучают белый свет, и Доплер, видимо, не знал об открытиях инфракрасного (У. Гершель , 1800 год) и ультрафиолетового излучения (И. Риттер , 1801 год) .

    Хотя к 1850 году эффект Доплера был подтверждён экспериментально для звука, его теоретическая основа вызвала острые дебаты, которые спровоцировал Йозеф Пецваль . Основные возражения Пецваля были основаны на преувеличении роли высшей математики. Он ответил на теорию Доплера своей работой «Об основных принципах волнового движения: закон сохранения длины волны», представленной на встрече Академии Наук 15 января 1852 года. В ней он утверждал, что теория не может представлять ценности, если она опубликована всего на 8 страницах и использует только простые уравнения. В своих возражениях Пецваль смешал два абсолютно разных случая движения наблюдателя и источника и движения среды. В последнем случае, согласно теории Доплера, частота не меняется .

    Экспериментальная проверка

    В 1845 году голландский метеоролог из Утрехта , Христофор Хенрик Дидерик Бёйс-Баллот , подтвердил эффект Доплера для звука на железной дороге между Утрехтом и Амстердамом . Локомотив, достигший невероятной на то время скорости 40 миль/ч (64 км/ч), тянул открытый вагон с группой трубачей. Баллот слушал изменения тона во время движения вагона при приближении и удалении. В тот же год Доплер провел эксперимент, используя две группы трубачей, одна из которых двигалась от станции, а вторая оставалась неподвижной. Он подтвердил, что, когда оркестры играют одну ноту, они находятся в диссонансе . В 1846 году он опубликовал пересмотренную версию своей теории, в которой он рассматривал как движение источника, так и движение наблюдателя. Позднее в 1848 году французский физик Арман Физо обобщил работы Доплера, распространив его теорию и на свет (рассчитал смещение линий в спектрах небесных светил) . В 1860 году Эрнст Мах предсказал, что линии поглощения в спектрах звёзд, связанные с самой звездой, должны обнаруживать эффект Доплера, также в этих спектрах существуют линии поглощения земного происхождения, не обнаруживающие эффект Доплера. Первое соответствующее наблюдение удалось провести в 1868 году Уильяму Хаггинсу .

    Прямое подтверждение формул Доплера для световых волн было получено Г. Фогелем в 1871 году путём сравнения положений линий Фраунгофера в спектрах , полученных от противоположных краёв солнечного экватора. Относительная скорость краёв, рассчитанная по значениям измеренных Г. Фогелем спектральных интервалов, оказалась близка к скорости, рассчитанной по смещению солнечных пятен .

    Сущность явления

    Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью . В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

    Математическое описание явления

    Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны λ) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

    где - угловая частота , с которой источник испускает волны, c {\displaystyle c} - скорость распространения волн в среде, v {\displaystyle v} - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

    Частота, регистрируемая неподвижным приёмником

    Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника

    ω = ω 0 (1 + u c) , {\displaystyle \omega =\omega _{0}\left(1+{\frac {u}{c}}\right),} (2)

    где u {\displaystyle u} - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

    Подставив вместо ω 0 {\displaystyle \omega _{0}} в формуле (2) значение частоты ω {\displaystyle \omega } из формулы (1), получим формулу для общего случая:

    ω = ω 0 (1 + u c) (1 − v c) . {\displaystyle \omega =\omega _{0}{\frac {\left(1+{\frac {u}{c}}\right)}{\left(1-{\frac {v}{c}}\right)}}.} (3)

    Релятивистский эффект Доплера

    ω = ω 0 ⋅ 1 − v 2 c 2 1 + v c ⋅ cos ⁡ θ {\displaystyle \omega =\omega _{0}\cdot {\frac {\sqrt {1-{\frac {v^{2}}{c^{2}}}}}{1+{\frac {v}{c}}\cdot \cos \theta }}}

    где c {\displaystyle c} - скорость света , v {\displaystyle v} - скорость источника относительно приёмника (наблюдателя), θ {\displaystyle \theta } - угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то θ = 0 {\displaystyle \theta =0} , если приближается, то θ = π {\displaystyle \theta =\pi } .

    Релятивистский эффект Доплера обусловлен двумя причинами:

    • классический аналог изменения частоты при относительном движении источника и приёмника;

    Последний фактор приводит к поперечному эффекту Доплера , когда угол между волновым вектором и скоростью источника равен θ = π 2 {\displaystyle \theta ={\frac {\pi }{2}}} . В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

    Наблюдение эффекта Доплера

    Поскольку явление характерно для любых волн и потоков частиц, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль или поезд будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

    Применение

    Эффект Доплера является неотъемлемой частью современных теорий о начале Вселенной (Большом взрыве и красном смещении). Принцип получил многочисленные применения в астрономии для измерений скоростей движения звёзд вдоль луча зрения (приближения или удаления от наблюдателя) и их вращения вокруг оси, параметров вращения планет,

    Сообщение от администратора:

    Ребята! Кто давно хотел выучить английский?
    Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
    Занимаюсь там сам - очень круто. Прогресс налицо.

    В приложении можно учить слова, тренировать аудирование и произношение.

    Попробуйте. Два урока бесплатно по моей ссылке!
    Жмите

    Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

    Частота волны в общем виде, зависит только от того, с какой скоростью двигается приемник

    Как только волна пошла от источника, скорость ее распространения определяется только свойствами среды, в которой она распространяется, - источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера .

    Для того чтоб был более понятным, рассмотрим пример на машине с сиреной.

    Предположим для начала, что машина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия - области повышенного давления, - чередующиеся с разряжениями. Пики сжатия - «гребни» акустической волны - распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки. Так вот, пока машина стоит, мы так и будем слышать неизмененный тон ее сигнала.

    Но как только машина тронется с места в вашу сторону, добавится новый эффект . За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если машина с звуковым сигналом поедет в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится.

    Имеет важное значение в астрономии, гидролокации и радиолокации. В астрономии по доплеровскому сдвигу определенной частоты испускаемого света можно судить о скорости движения звезды вдоль линии ее наблюдения. Наиболее удивительный результат дает наблюдение доплеровского сдвига частот света удаленных галактик: так называемое красное смещение свидетельствует о том, что все галактики удаляются от нас со скоростями примерно до половины скорости света, возрастающими с расстоянием. Вопрос о том, расширяется ли Вселенная подобным образом или красное смещение обусловлено чем-то иным, а не «разбеганием» галактик, остается открытым.

    1

    Юшкевич Р.С., Дегтярева Е.Р.

    В статье даётся вывод формул к эффекту Доплера без использования закона сложения скоростей, но с использованием принципа постоянства скорости света только относительно источника света. Определена пространственная граница возможности приёма электромагнитных волн. Рассмотрена зависимость скорости света от расстояния. Определен коэффициент для вычисления скорости света.

    Для объяснения эффекта допускаем, что свет, идущий от источника света, связан с источником и распространяется от него со скоростью с = 3 · 10 8 м/с относительно источника. Для приемника скорость света относительно источника будет складываться со скоростью источникаv .

    Чтобы определить зависимость частоты света ν от скорости v , рассмотрим распространение света от двух источников, один из которых Ѕ движется по направлению от приемника со скоростью v , а другой S 0 покоится.

    Рис. 1.

    Одинаковые источники излучают свет одинаковой частоты ν 0 . Свет относительно источников распространяется с одинаковой скоростью с , поэтому и длина излучаемой волны λ 0 будет одинакова. К приемнику от движущегося источника свет подойдет со скоростью с- v и длина волны λ 0 будет принята за время Т = (период), а от покоящегося источника - за время Т 0 = . Периоды есть величины обратные частотам колебаний и . Подставим значения Т и Т 0 в полученные равенства

    разделив их почленно, получаем

    ,

    получаем [с. 181].

    (1)

    В случае, когда источник и приемник сближаются, надо знак v заменить на противоположный, получим . Отметим, что с- v и c - это скорости света соответственно относительно приемника и источника света.

    Теперь рассмотрим случай, когда источник света движется перпендикулярно направлению на приемник. Учитывая, что свет связан с источником, распространяется относительно его со скоростью с и сносится с ним со скоростью v , чтобы он попал на приемник его надо направить под некоторым углом α так, что sinα = . В этом случае составляющая скорости света, совпадающая с направлением на приемник А будет , составляющая v на это направление равна 0. Чтобы не повторять предыдущие рассуждения, воспользуемся формулой (1), с- v заменим на , а скорость с относительно источника останется неизменной. В результате получаем:

    что соответствует результату, полученному в опытах Айвса [с. 181].

    Рис. 2.

    При переходе света от источника к приемнику меняется его частота от ν 0 до ν. Из формулы с=λν следует, что должна меняться и длина волны. Если от источника света шла волна длиной λ 0 , то приемник получит ее другой, допустим λ . Получить значение λ можно, воспользовавшись тем, что λ и ν величины обратно пропорциональные . Подставив значение ν из формулы (1), получим

    Для большей уверенности получим эту формулу другим способом.

    Любой приемник света может быть и излучателем, значит, он имеет такую же светонесущую среду, как и источник, и свет в ней распространяется со скоростью с . Свет, переходя из среды источника в среду приемника, получает скорость с относительно приемника.

    Волна длиной λ 0 от источника к границе раздела сред источника и приемника подходит со скоростью с - v и границу пройдет за время C самого начала входа волны в сферу среды приемника ее начало приобретает скорость с относительно приеника и за время Т пройдет путь λ = сТ. Подставив значение Т , получаем:

    Рис. 3.

    В первой половине ХХ в. американский ученый Хаббл в спектрах далеких звезд обнаружил смещение спектральных линий в сторону красной части спектра по сравнению с лабораторными спектрами - «красное смещение». Это означало, что длина принимаемой волны λ больше, чем λ 0 и чем дальше звезда, тем больше «красное смещение».

    В формулу (2) входят четыре величины λ, λ 0 , с и v . Кo времени открытия «красного смещения» скорость света с постулатом Эйнштейна была закреплена постоянной относительно любой системы отсчета, значит, и λ 0 , связанная со скоростью света с и источником излучения, оказалась постоянной. В формуле (2) переменная величина λ , оказалась связанной со скоростью источникаv . Увеличение λ вызывает и увеличение v .

    «Красное смещение» наблюдается у звезд, расположенным по всем направлениям, поэтому был признан факт расширения Вселенной.

    В астрономии связь между λ и v определяется другой формулой

    (3)

    для удаляющегося источника излучения.

    Для одного и того же явления и одних и тех же величин двумя формулами устанавливается разная зависимость! Чтобы разобраться с этим, сравним результаты, которые дают эти формулы при различных v . Ограничений на значение скорости v формулы не требуют. Для удобства длины волн обозначим λ 3 и λ 2 соответственно обозначению формул (3) и (2 ), в которые они входят. При v =0 :

    При 0< v < с сравним делением:

    Если v «с , то и λ 3 ≈ λ 2 . При этих двух условиях результаты практически не противоречат друг другу.

    При v = с; λ 2 превращается в бесконечность, при этом формула (1) дает . Получается, что световая волна от источника к приемнику не попадает, она со скоростью с от источника будет двигаться к приемнику и вместе с источником будет с такой же скоростью уходить от него с - с = 0 .

    Третье сравнение требует сделать вывод, какая же формула правильно отражает действительность. Происхождение формулы (2) рассмотрено в начале статьи. Теперь рассмотрим, как получается формула (3).

    Рис. 4.

    Представим, что источник света окружен средой, в которой свет распространяется к приемнику со скоростью с . Источник света в точке А начал излучать волну. Время излучения одной волны обозначим Т (период). С момента появления начала волны оно начинает перемещаться к приемнику в окружающей среде со скоростью с и за время Т удалится от точки А на расстояние сТ . Но за это же время источник, двигаясь от приемника окажется в точке С , пройдя расстояние АС = v Т , где и окажется конец волны. Расстояние от С до В и будет длиной волны λ = сТ + v Т = (с + v

    Если источник не движется, то v = 0 и длина волны будет λ 0 = сТ. Разделив λ на λ 0 , получим:

    В начале статьи мы рассмотрели среду, которая обеспечивает скорость света с, она либо связана с источником, либо с приемником света. Первая - дает формулы (1) и (2). Вероятность того, что вторая, от далеко расположенного приемника света, на скорость света больше влияла, чем среда источника света, ничтожно мала. Остается среда, не связанная ни с источником ни с приемником света, которая действует подобно воздуху (веществу) на распространение звука. Но отрицательный результат опытов Майкельсона по обнаружению «эфирного ветра» доказал, что такой среды в природе нет. Остается сделать предпочтение формуле (2). Ранее отмечалось, что при удалении источника света со скоростью v = с волна не достигнет приемника, и сигнал не будет получен.

    Хабл ввел закон, носящий его имя [с. 120]

    v = НD ,

    где v - скорость удаления источника света, D - расстояние между источником и приемником, Н - коэффициент пропорциональности, называемой постоянной Хабла.

    .

    1 Мпк = 10 6 пк; 1пк (парсек) = 3,26 светового года = 3 . 10 13 км.

    Найдем расстояние, при котором v = с: ;

    D - это радиус сферы, ограничивающей прием прямого электромагнитного излучения из просторов Вселенной. Из прилегающих к этой сфере зон во внутренней ее части электромагнитные излучения могут приходить только в виде радиоволн. В природе не наблюдается какого-либо приоритетного направления в распределения звезд, поэтому радиоизлучение должно приходить со всех сторон равномерно.

    Рассмотрим вариант, когда v >с. В этом случае формулы (1) и (2) дают: и .

    Это означает, что волна должна приходить с направления, противоположного тому, где находиться излучатель.

    При v = 2с имеем

    .

    Волна придет без «красного смещения». Определенная в статье граница возможного приема электромагнитного излучения будет верной, если верен закон Хаббла и «красное смещение» вызвано исключительно удалением излучателя. Если же обнаружатся другие факторы, уменьшающие скорость света относительно приемника (а они могут быть), то граница приема волн может быть приближена.

    Обратимся теперь к формулам (1) и (2). В них c-v есть скорость света относительно приёмника, обозначим её с 1 =с-v откуда v=c-c 1 .В формулах v представляет разность скоростей света независимо от природы её возникновения. Принято считать, что это результат удаления источника света. Но эта разность скоростей может возникнуть и за счет уменьшения скорости света с увеличением расстояния. Свет это поток квантов энергии и, возможно, что скорость их может уменьшаться.

    Предположим, что скорость света с увеличением расстояния от источника света уменьшается, образно говоря «свет стареет».

    Известно, что скорость света уменьшается при переходе из оптически менее плотной среды в более плотную. Вызвано это тем, что, что меняются условия для прохождения света. Уменьшение скорости характеризуется показателем преломления n; , где с - скорость света в вакууме а с 1 - скорость в другой среде.

    Если по предположению, скорость света уменьшается с увеличением расстояния от источника света, то, значит, меняются и условия его прохождения, что также можно характеризовать показателем преломления n. Получаем, что уменьшенная скорость света будет .

    В статье «Опыт Физо» (ж. «Современные наукоёмкие технологии» №2, 2007г.) для определения скорости света в движущейся среде показатель преломления n был использован в виде , где часть показателя, определяемая излучающим атомом, а определяется условиями прохождения света в среде.

    Применим такое представление показателя преломления и для вакуума. Если мы приняли предположение, что в вакууме скорость света уменьшается, а вакуум является однородной средой, то уменьшение скорости света должно зависеть только от расстояния и пропорционально ему. Поэтому можно записать ,где D -расстояние до источника света, μ - коэффициент пропорциональности постоянная величина. Скорость принимаемого света будет

    Разность между начальной и уменьшенной скоростями света будет

    Здесь выражена зависимость между уменьшением скорости света и расстоянием D . Связь между этими же величинами выражает и закон Хабла где v - скорость удаления звезды, что для приёмника света есть разность с-с 1 .

    Сравним значения v , которые дают эти два уравнения для предельных значений расстояния D.

    Если , то из первого уравнения получаем: , n =1 (для малых расстояний) и . Из закона Хаббла также получаем .

    Если это совпадение не случайно, можно предположить, что кванты световой энергии связаны с излучателем, на это же указывает и связь светонесущей среды с источником света.

    Чтобы определить скорость с 1 , надо решить относительно n уравнение:

    и через n найти скорость с 1 .

    Для малых значений D можно использовать закон Хаббла.

    В статье имеется явное противоречие. Основываясь на понятии о расширении Вселенной, получен вывод о существовании границы возможного приема электромагнитных волн, а, основываясь на естественном уменьшении скорости света, такая граница отсутствует. Получается, что обнаружение такой границы будет являться доказательством расширения Вселенной.

    В статье также без убедительных оснований принято предположение о зависимости скорости света от расстояний. Основания для этого предположения будут обнаружены при рассмотрении процесса излучения квантов света атомом.

    СПИСОК ЛИТЕРАТУРЫ:

    1. Зисман Г.А., Тодес О.М., Курс общей физики т.3. - М.: «Наука», 1972г.
    2. Воронцов - Вельяминов Б.А. Астрономия 10. - М.: «Просвещение», 1983г.

    Библиографическая ссылка

    Юшкевич Р.С., Дегтярева Е.Р. ЭФФЕКТ ДОПЛЕРА И СКОРОСТЬ СВЕТА // Фундаментальные исследования. – 2008. – № 3. – С. 17-24;
    URL: http://fundamental-research.ru/ru/article/view?id=2764 (дата обращения: 09.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

    λ, воспринимаемой наблюдателем при движении источника колебаний и наблюдателя относительно друг друга. Возникновение Доплера эффекта проще всего объяснить на следующем примере. Пусть неподвижный источник в однородной среде без дисперсии испускает волны с периодом Т 0 = λ 0 /υ, где λ 0 - длина волны, υ - фазовая скорость волны в данной среде. Неподвижный наблюдатель будет принимать излучение с таким же периодом Т 0 и той же длиной волны λ 0 . Если же источник S движется с некоторой скоростью V s в сторону наблюдателя Р (приёмника), то длина принимаемой наблюдателем волны уменьшится на величину смещения источника за период Т 0 , то есть λ = λ 0 -V S T 0 , а частота ω соответственно увеличится: ω = ω 0 /(1 - V s /υ). Принимаемая частота увеличивается, если источник неподвижен, а наблюдатель приближается к нему. При удалении источника от наблюдателя принимаемая частота уменьшается, что описывается той же формулой, но с изменённым знаком скорости.

    В общем случае, когда и источник, и приёмник движутся относительно неподвижной среды с нерелятивистскими скоростями V S и V P под произвольными углами θ S и θ Р (рис.), принимаемая частота равна (1):

    Максимальное увеличение частоты происходит при движении источника и приёмника навстречу друг другу (θ S = 0, θ Р = π), а уменьшение - при взаимном удалении источника и наблюдателя (θ S = π, θ Р = 0). Если же источник и приёмник движутся с одинаковыми по величине и направлению скоростями, Доплера эффекта отсутствует.

    При скоростях движения, сравнимых со скоростью света с в вакууме, необходимо принять во внимание релятивистский эффект замедления времени (смотри Относительности теория); в результате для неподвижного наблюдателя (V P = 0) принимаемая частота излучения (2)

    где β = V S /с. В этом случае смещение частоты имеет место и при θ S = π/2 (так называемый поперечный Доплера эффект). Для электромагнитных волн в вакууме в любой системе отсчёта υ = с и в формуле (2) под V S нужно понимать относительную скорость источника.

    В средах с дисперсией, когда фазовая скорость υ зависит от частоты ω, соотношения (1), (2) могут допускать несколько значений ω для заданных ω 0 и V S то есть в точку наблюдения под одним и тем же углом могут приходить волны с разными частотами (так называемый сложный Доплера эффект). Дополнительные особенности возникают при движении источника со скоростью V S > υ, когда на поверхности конуса углов, удовлетворяющих условию cosθ S = υ/V S , знаменатель в формуле (2) обращается в нуль, - имеет место так называемый аномальный Доплера эффект. В этом случае внутри указанного конуса частота растёт с увеличением угла θ S , тогда как при нормальном Доплера эффекте под большими углами θ S излучаются меньшие частоты.

    Разновидностью Доплера эффекта является так называемый двойной Доплера эффект - смещение частоты волн при отражении их от движущихся тел, поскольку отражающий объект можно рассматривать сначала как приёмник, а затем как переизлучатель волн. Если ω 0 и υ 0 - частота и фазовая скорость волны, падающей на плоскую границу, то частоты ω i вторичных (отражённых и прошедших) волн, распространяющихся со скоростями υ i , определяются как (3)

    где θ 0 , θ i - углы между волновым вектором соответствующей волны и нормальной составляющей скорости V движения отражающей поверхности. Формула (3) справедлива и в том случае, когда отражение происходит от движущейся границы изменения состояния макроскопически неподвижной среды (например, волны ионизации в газе). Из неё следует, в частности, что при отражении от границы, движущейся навстречу волне, частота повышается, причём эффект тем больше, чем меньше разница скоростей границы и отражённой волны.

    Для нестационарных сред изменение частоты распространяющихся волн может происходить даже для неподвижных излучателя и приемника - так называемый параметрический эффект Доплера.

    Доплера эффект назван в честь К. Доплера, который впервые теоретически обосновал его в акустике и оптике (1842). Первое экспериментальное подтверждение Доплера эффекта в акустике относится к 1845. А. Физо (1848) ввёл понятие доплеровского смещения спектральных линий, которое было обнаружено позднее (1867) в спектрах некоторых звёзд и туманностей. Поперечный Доплера эффект был обнаружен американскими физиками Г. Айвсом и Д. Стилуэллом в 1938. Обобщение Доплера эффекта на случай нестационарных сред принадлежит В. А. Михельсону (1899); на возможность сложного Доплера эффекта в средах с дисперсией и аномального Доплера эффекта при V > υ впервые указали В. Л. Гинзбург и И. М. Франк (1942).

    Доплера эффект позволяет измерять скорости движения источников излучения и рассеивающих волны объектов и находит широкое практическое применение. В астрофизике Доплера эффект используется для определения скорости движения звёзд, а также скорости вращения небесных тел. Измерения доплеровского красного смещения линий в спектрах излучения удалённых галактик привели к выводу о расширяющейся Вселенной. Доплеровское уширение спектральных линий излучения атомов и ионов даёт способ измерения их температуры. В радио- и гидролокации Доплера эффект используется для измерения скорости движущихся целей, для определения их на фоне неподвижных отражателей и т. п.

    Лит.: Франкфурт У. И., Френк А. М. Оптика движущихся тел. М., 1972; Угаров В. А. Специальная теория относительности. 2-е изд. М., 1977; Франк И. М. Эйнштейн и оптика // Успехи физических наук. 1979. Т. 129. Вып. 4; Гинзбург В. Л. Теоретическая физика и астрофизика: Дополнительные главы. 2-е изд. М., 1981; Ландсберг Г. С. Оптика. 6-е изд. М., 2003.

    Эффект Доплера – это физическое явление, состоящее в изменении частоты волн в зависимости от движения источника этих волн относительно наблюдателя. При приближении источника частота излучаемых им волн увеличивается, а длина уменьшается. При удалении источника волн от наблюдателя их частота уменьшается, а длина волны увеличивается.

    Например, в случае звуковых волн при удалении источника высота звука понизится, а при приближении тон звука станет более высоким. Так, по изменению высоты тона можно определить, приближается или удаляется поезд, автомобиль со звуковым спецсигналом и т.д. Электромагнитные волны также демонстрируют эффект Доплера. Наблюдатель в случае удаления источника заметит смещение спектра в «красную» сторону, т.е. в сторону более длинных волн, а при приближении – в «фиолетовую», т.е. в сторону более коротких волн.

    Эффект Доплера оказался крайне полезным открытием. Благодаря ему было обнаружено расширение Вселенной (спектры галактик смещены в красную сторону, следовательно, они от нас удаляются); разработан метод диагностики сердечно-сосудистой системы через определение скорости кровотока; созданы различные радары, в том числе и те, которые используются ГИБДД.

    Самый популярный пример распространения эффекта Доплера: машина с сиреной. Когда она едет к тебе или от тебя, ты слышишь один звук, а когда проезжает мимо, то совершенной другой - более низкий. Эффект Доплера связан не только со звуковыми волнами, но и любыми другими. С помощью эффекта Доплера можно определить скорость чего-либо, будь это машина или небесные тела, при условии, что мы знаем параметры (частоту и длину волны). Все, что связано с телефонными сетями, вай-фаем, охранными сигнализациями - везде можно наблюдать эффект Доплера.

    Или возьмем светофор - у него есть красный, желтый и зеленый цвета. В зависимости от того, с какой скоростью мы движемся, эти цвета могут меняться, но не между собой, а смещаться в сторону фиолетового: желтый будет уходить в зеленый, а зеленый в синий.

    Ну почему же? Если мы движемся от источника света и смотрим назад (или светофор уезжает от нас), то цвета сдвинутся в сторону красного.

    И, наверное, стоит уточнить, что скорость, на которой красный можно перепутать с зеленым, намного выше той, с которой можно ездить по дорогам.

    Ответить

    Прокомментировать

    Суть эффекта Допплера заключается в том, что если источник звука приближается к наблюдателю или отдаляется от него, то частота звука, испускаемого им, с точки зрения наблюдателя изменяется. Так, например, изменяется звук двигателя машины, которая проезжает мимо вас. Он выше пока она приближается к вам и резко становится ниже, когда она пролетает мимо вас и начинает удаляться. Изменение частоты тем сильнее, чем выше скорость движения источника звука.

    К слову, этот эффект справедлив не только для звука, но и, скажем, для света. Просто для звука он нагляднее - его можно наблюдать на относительно небольших скоростях. У видимого света настолько большая частота, что небольшие изменения за счёт эффекта Допплера невооружённым глазом незаметны. Однако, в некоторых случая эффект Допплера следует учитывать даже в радиосвязи.

    Если не углубляться в строгие определения и попытаться объяснить эффект, что называется, на пальцах, то всё достаточно просто. Звук (как и свет или радиосигнал) - это волна. Для наглядности, давайте будем считать, что частота принимаемой волны зависит от того, как часто мы принимаем "гребни" схематической волны (). Если источник и приёмник будут неподвижны (да, относительно друг друга), то мы будем принимать "гребни" с той же частотой, с какой их излучает приёмник. Если же источник и приёмник начнут сближаться, то мы начнём принимать тем чаще, чем выше скорость сближения - скорости будут складываться. В итоге частота звука на приёмнике будет выше. Если же источник начнёт удаляться от приёмника, то каждому следующему "гребню" понадобится чуть больше времени, чтобы достигнуть приёмника - мы начнём принимать "гребни" чуть реже, чем их излучает источник. Частота звука на приёмнике будет ниже.

    Это объяснение в известной степени схематично, но общий принцип оно отражает.

    Если коротко - изменение наблюдаемой частоты и длины волны в том случае, если источник и приемник движутся относительно друг друга. Связан с конечностью скорости распространения волн. Если источник с приемником сближаются - частота растет (пик волны регистрируется чаще); удаляются друг от друга - частота падает (пик волны регистрируется реже). Оычная иллюстрация эффекта - сирена спецслужб. Если скорая к вам подъезжает - сирена визжит, отъезжает - басовито гудит. Отдельный случай - распространение электромагнитной волны в ваккууме - там добавяется еще релятивистская составляющая и допплеровский эффект проявляется и в том случае, когда приемник и источник неподвижны относительно друг друга, что объясняется свойствами времени.

    Попробую ответить наиболее простым способом:
    Представте, что вы стоите на месте и каждую секунду запускаете волну (например голосом), которая радиально распространяется от вас со скоростью 100 м/с.

Статьи по теме